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1. Motivation

For every creature in the world, their response toward internal and external
signals plays an important role in survival. For animal, such movement can be
finding the location for food or tracing for attractive mates. For cells in the body,
this can be sperm cells are attracted to chemical substances released from the
outer coating of the egg or fibroblasts into wounded regions to initiate healing.

Here, the directed movement of cells and organisms in response to chemical
gradients, chemotaxis, has attracted significant interest due to its critical role in a
wide range of biological phenomena.

The description of chemotaxis was first made by T W. Engelmann (1881)
and W.F. Pfeffer (1884) in bacteria and H.S. Jennings (1906) in ciliates [1l. The
significance of chemotaxis in biology and clinical pathology was widely accepted
in the 1930s. The most fundamental definitions belonging to the phenomenon
were also drafted by this time. The most important aspects in quality control of

chemotaxis assays were described by H. Harris in the 1950s.

Milestones in chemotaxis research
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However, to talk about the modern chemotaxis that exists from the
revolution of technology, we’d like to introduce the well-known model: Keller-
Segel model(KS model). Theoretical and mathematical modeling of chemotaxis
dates to the works of Patlak in the 1950s and Keller and Segel in the 1970s [2].

The general form of the model is:

u; = Viki(u, v)Vu — kr(u, v)uVvu) + kz(u, v),
vy = DyAv + kg(u, v) — ks(u, v)v,

It is a reduced form under quasi-steady-state assumptions on both of the models.



Here u denotes the cell density and v is the concentration of the chemical signal.
K1 is the diffusivity of the cells, k2 is the chemotactic sensitivity, k3 describes the
cell growth and death. In signal concentration model, k4 and k5 describe the
production and degradation of the chemical signal. Note that cell migration is
dependent on the gradient of the signal.

KS equation has been widely used for chemotaxis since its ability to capture
key phenomena and intuitive nature. For example, E. coli, can be induced to form
a variety of spatial patterns when provided a suitable environment, such
reaction can be simulated by KS model. By utilizing KS equation, we can also
understand whether chemotaxis may underpin embryonic pattern forming
processes, such as the formation of the primitive streak, pigmentation patterning
in snakes. We can also predict the tumor cell-induced angiogenesis, and
macrophage invasion into tumor.

One famous example of chemotaxis is the movement of E. coli. E. coli has
several flagella, which can rotate either counter-clockwise or clockwise rotation.
Counter-clockwise rotation will move the bacteria in a straight line while
clockwise rotation will only make bacteria tumbling in place. The movement of
bacteria is actually looked like random walk with relatively straight swims since
bacteria cannot go in a straight line for more than a few seconds due to
rotational diffusion. Therefore it needs to repeatedly evaluate the chemical

gradient to decide going straight or rotate [3.
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2. Formulation of Classic Keller-Segel Model

and Minimal Model

The classical Keller-Segel model (KS model) is composed by a set of
equations. Equation (2.1) represents the cell density variation over time, and
equation (2.2) represents the chemical attractant concentration variation over
time [41,

u, =V-(DVu- xuVv)+ f (2.1)

v,=D,Av+g—h (2.2)
Where u: represent aa—bt' , D; is the diffusion coefficient of cell, y is the
chemotactic sensitivity, vis the chemical attractant concentration, and function f
regulates the cell die/divide, which controls the gross cell number in our
observation. D; in equation (2.2) represents the diffusion coefficient of chemical
attractant, function g regulates the production rate of chemical attractant, and
function h regulates the degradation rate of chemical attractant.

Although the parameters in classical KS model are straight forward, it is
very important to understand the formulation steps of classical KS model.

We start deriving the classical KS model from a very basic assumption by
letting an arbitrary surface S enclosing a volume V [5l. According to the general
conservation equation, the rate of change of the amount of material uin Vequals
to the rate of flux of u across S out of Vplus the u created/disappeared in V. Thus

9]
o Vua’v=—j;CD-nds+j;fdv (2.3)

where @ is the flux of material uand fis the source term of u. According to the

Divergence theorem
fsd)'nds =fVV'<I)dv (2.4)

and since the function of the cell density u is continuous, and the volume V is

arbitrary, the integrand must be zero. Thus, the equation can be rewritten as
fV(ut+V-CI>—f)dv=0 (2.5)

where we rewrite Z—L; into us We then simplified the equation into
u =V-(DVu)+ f (2.6)



This equation holds for a general flux transport @ whether by diffusion or by
some other processes.
Since the flux in our chemotaxic model is contribute by to two different

terms, which are cell diffusion flux and chemotaxis flux.

(I)total = (I)diﬁ" + (I)chemo (27)
Where we consider Fick’s law as the process of cell diffusion flux.
® .. =-DVu (2.8)
And the chemotaxis flux,
q)chemo = XUVV (29)

where y is chemotactic coefficient. The analysis of y in various forms has been
carried out by different researchers.
Now, plug in the @ .z into equation (2.6) yields

u, =V-DVu-V- yu(u,v)Vv+ f(u,v) (2.10)

the cell density part of the classical KS model. By repeating the same process
above, for one chemical attractant, we yield the chemical attractant

concentration part of the classical KS model.
v, =V-D,Vv+ g(u,v)-h(u,v) (2.11)

Yet, the classical KS model is still too complicated for us to solve and to
simulate the cell behavior. Some more assumption needs to be made to simplify
our model. Thus, we come up with Minimal Model of classical KS model. The
necessity assumptions are as follow,

* Individual cells undergo a combination of random motion and chemotaxis

towards chemical attractant.

* Cell neither die nor divide.

* The attractant is produced at constant rate.

* The degradation rate of attractant is linearly dependent on its

concentration.

* The attractant diffuses passively over the field.



Using these assumptions, the cell proliferation/death term f(u,v) of equation
(2.10) is now 0, the term g(u,v) in the equation (2.11) is now only the function of
u, and the term h(u,v) in the equation (2.11) is now only the function of v. Taking
D1, D2, and yx also be positive constant, thus the parabolic quasi-linear equation of

minimal model of KS model can be noted as

u, =V-(DVu— xuVv) (2.12)
v, =V?Dyv+g(u)-h(v) (2.13)

3. Analyzation of Keller-Segel Minimal Model
u; = V(D,Vu — yuVvo) (3.1
vy = D,V2v + au — bv (3.2)

As shown in equation (3.1) and (3.2), this is a set of coupled non-linear PDEs,

so they can’t be solved analytically. However, we can simplify this model to study

some other properties of the KS model.

Homogeneous Steady States
Homogeneous steady state of a PDE model means that the solution is
constant in both space and time. So the Ut and Vt must satisfy:
ulx,t) =ul, vix,t) = vl

dul oJvl
ot ot
dul oJul
ox  ox

= qul = bvl

This means that attractant rate must be exactly balanced by the decay rate.

Stability Analysis

If the homogeneous steady state is stable to small perturbations in the
absence of diffusion but unstable to small spatial perturbations when diffusion is
present, the system exhibits Turing instability. The main process driving the
spatially inhomogeneous instability is diffusion.

In determining the necessary and sufficient conditions for diffusion-driven
instability of the steady state, we look at the spatially inhomogeneous
perturbations and then explore whether the perturbations are amplified or
attenuated.



If amplification occurs, then a situation close to the spatially uniform steady
state will destabilize, leading to some new state in which spatial variations
predominate, and even there could possibly exist oscillating solutions. This
process is supposed to happen by chaning the parameters D1,D2, x, and a.

We perform the stability analysis in one dimension. Introduce the variables u’
and v’ by the definitions

u(x, t) =ul + u'(x, t)
v(x, t) =vl+v'(x,t)
Plug u’ into equation (3.1) , we get

au'_DaZu' (ul + )
ot Tlgyz  A\METH

0%v’ N ou' ov’
0x%2  dx 0x

This is still non-linear equation. So we assume u’ and v’ are very mall.

1820 dur dvr
0x2’ ax oax

are smaller compared to other parts of the equation and can be

neglected. Then we get:

ou’ _p a%u’ | a%v’ 3
ot “Digaz—rlgz G

Similarly, plug v’ into (2), we get

v’ %' , )
E=D2ﬁ+au—bv (4)
The boundary conditions are
M~  atx=0andx=L
0x
dvr
— =0 atv=0andv=L
ox

Linearize u’ and v’ into a vector

_(u—ul
y= (v - vl)
Plug into equation (3) and (4)

D, —yul 0 O
— 2 -1 —
y: = AV°y + By (7) Where A—< 0 D, > B—(a —b)

Define Y (x) as time-independent solution of spatial eigenvalue
VY + k%Y =0
We can know the solution of Y is in the form:

mnx
Y « cos (T)

So the full solution should be in the form:



Y0 = ) Cre? V()
k

Plug this form into (7), we get
AYk = BYk - szYk (8)

To solve the eigenvalue A

A+ k2D, —kyul _ 0
—a A+b+k?D,|
A +qgi+r=0

Where q = k?(D; + D,) + b
r = k?[D,(D,k? + B) — yula]
So different values of D,, D,, y will determine the stability of this system.

Numerical Solution
The equations can be solved numerically. The solution is:

n+1 n n—-1 n—-1 n—-1 n—-1 n-1.n-1 n-1
e I N 2u; " Ui _X(ui+1 —Ui—1 Viy1 — Vi
At Ax? 2Ax 2Ax

R Y
+u )
Ax?
n+1 n n—-1 n—-1 n—-1
2l 7 S 7 S 7 A SR n n
= 2 + ul' - vi
At Ax

Where i indicates distance and n indicates time.

Distribution of chemoattractant

Time t 0.4
0y 02

Distance x

This is our matlab result.D1=0.1, D>=1, Initial condition: u(x,0)=1, 1

v(x,0)=140.1~10% With zero flux boundary condition.



Distribution of cells
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We can see that migrations of cells are influenced by distribution of external
chemical signals. Cells tend to move to the places with higher concentrations of
chemoattractant.

4. Modeling the chemotaxis of E. coli

The migration of E. coli can be directed by chemical gradients created by
aspartate. Here, we look at the migration of E. coli cells, taking into
consideration the randomness of their movement as well as empirical data.

The movement of the E. coli can be modeled by the statement [¢l:

c(t)

c(t—1)
Tumbling X c(t)

' < rand
Yesif 100* ce—1) <"

no otherwise

yesif 1>

E. coli check the current chemoattractant concentration roughly every
second [7l. If the concentration of aspartate has decreased since the last time
the concentration was checked, the cell will tumble. But if the concentration
has increased, the cell will compare the ratio of current concentration over
previous concentration multiplied by a factor X/100, where X is some percentage
to a random number between 0 and 1. If this second condition is met, the cell
will also tumble. This makes it possible for the cell to tumble despite travelling
up the concentration gradient. Additionally, due to the ratio of concentrations, a

cell experiencing a greater jump in concentration will be less likely to tumble.



The diffusion of the chemoattractant can be modeled by one-dimensional

diffusion, where x is the distance from the source:

oL@ _ 0@y

ot 0x?
The concentration of the chemoattractant is zero everywhere to begin with:
IC:C(x,0)= 0

And the concentration at the source will be held constant while the
concentration at an infinite distance from the source will remain zero.
BC1:€(0,t) = C,
BC2:C(0,t) = 0

By applying a Laplace transform to the diffusion equation, we obtain:

0%C(x,t
sC(x,s) — C(x,0) = D%

With the initial condition, this can be reduced to:
0%C(x,t
D (x,1)

0x?

This is now a simple ODE with solution of the form:

— sC(x,s) =0

s _ 15
C(x,s) = kle\gx + ke \Bx
The boundary conditions must be transformed into the s domain and are applied

to the above equation to obtain the values of k1 and ka:

BC2:L{C(o0,t)} =0 - k; =0

C
BC1:L{C(0,t)} = ?" =k,

Therefore, the diffusion equation in the s domain is:

Co - (5
C(x,s) =?Oe \Ex

Transforming back to the time domain, we obtain the final equation describing

the diffusion of the aspartate:

Clx,t) = C, erfc<

)

The system was modeled with the following biological parameters:



*  Dasp =8.0x1010 m?2/s 8!

*  Vag =27 um/s [4]

* Co=6938 mol/m?3

* dEcli =2 pum

« X=60

* Minimum detectable concentration of aspartate = 108 M [°]
Vave describes the average speed of the bacteria. Co, the concentration of
aspartate at the source, is given the value of the saturation point of aspartate in
water. The diameter of the E. coli is two microns. And X, the variable scaling the
probability of tumbling while travelling up the chemical gradient, is 60.
Additionally, the cells cannot detect the presence of aspartate below a
concentration of 10-8 M.

By applying the relationships and variable mentioned, the paths taken by
E.coli cells can be seen in the figure below. It is clear that the cells migrate
towards position (0,0), which is the source of the chemoattractant. The cells
further from the center continue to tumble because the concentration of the
chemoattractant does not reach a high enough value for them to recognize it.
Additionally, it is apparent that cells travelling up the chemical gradient do not
simply take a direct path to the center, but still experience tumbling to some

degree.
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4. Conclusion

According to our analysis of chemotaxis simulation via KS model, we come up
with three main conclusions:

* Under certain conditions KS model applied well:
1. Values of D1, D2, B, and n must be small.
2. Values of L, X, A, and u must be large.

* KS model is a combination of Fourier’s law, Fick’s law, random walk
approaches, and stochastic processes.

* Able to simulate the time variant cell behavior and the formation of
steady state.

5. Future Works

We would like to extend out discussion of multi-chemical species combines
within one simulation equation; time delay between signal detection and
response; cell collisions with we ignore in our simulation; and add in the cell
division and death ratio to our system. Also, the reality of any specific biological
system are actually a combination of different KS models, one or two models is

simply not enough. Furthermore, we would like to extend our model to 3D.
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